Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Brain Dis ; 33(3): 813-821, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29363039

RESUMO

Progesterone displays a strong potential for the treatment of neonatal hypoxic-ischemic encephalopathy since it has been shown to be beneficial in the treatment of the central nervous system injuries in adult animals. Here, we evaluated the effects of the administration of progesterone (10 mg/kg) in seven-days-old male Wistar rats submitted to neonatal hypoxia-ischemia (HI). Progesterone was administered immediately before ischemia and/or 6 and 24 h after the onset of hypoxia. The body weight of the animals, the volume of brain lesion and the expression of p-Akt and procaspase-3 in the hippocampus were evaluated. All animals submitted to HI showed a reduction in the body weight. However, this reduction was more remarkable in those animals which received progesterone before surgery. Administration of progesterone was unable to reduce the volume of brain damage caused by HI. Moreover, no significant differences were observed in the expression of p-Akt and procaspase-3 in animals submitted to HI and treated with either progesterone or vehicle. In summary, progesterone did not show a neuroprotective effect on the volume of brain lesion in neonatal rats submitted to hypoxia-ischemia. Furthermore, progesterone was unable to modulate p-Akt and procaspase-3 signaling pathways, which may explain the absence of neuroprotection. On the other hand, it seems that administration of progesterone before ischemia exerts some systemic effect, leading to a remarkable reduction in the body weight.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Progesterona/farmacologia , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Caspase 3/metabolismo , Masculino , Fármacos Neuroprotetores/farmacologia , Progesterona/metabolismo , Ratos Wistar
2.
Metab Brain Dis ; 33(1): 343-345, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28918469

RESUMO

Hunter syndrome (MPS II, OMIM 309900) is a lysosomal storage disorder due to deficient iduronate sulphatase activity. Patients present multiple cognitive alterations, and the aim of this work was to verify if MPS II mice also present some progressive cognitive alterations. For that, MPS II mice from 2 to 6 months of age were submitted to repeated open field and inhibitory avoidance tests to evaluate memory parameters. MPS II mice presented impaired memory at 6 months evaluated by open field test. They also performed poorly in the inhibitory avoidance test from 4 months. We conclude that MPS II mice develop cognitive alterations as the disease progresses. These tests can be used in the future to study the efficacy of therapeutic approaches in the central nervous system.


Assuntos
Comportamento Animal/fisiologia , Transtornos da Memória/metabolismo , Memória/fisiologia , Mucopolissacaridose II/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiopatologia , Cognição/fisiologia , Modelos Animais de Doenças , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...